Seseorang yang mengaku dari tahun 2036 datang ke tahun 2000 untuk memposting di forum internet, mengaku sebagai prajurit amerika di tahun 2036 mengemban misi ke tahun 1975 untuk mengambil komputer portable pertama di dunia yaitu IBM 5100, dan mampir di tahun 2000-2001 untuk melihat keluarganya.
adapun pro dan kontra terhadap orang ini di forum menjadi topik hangat saat itu, karena dia dapat membuktikan hal-hal yang akan terjadi di masa dpn, dia juga mengupload foto mesin waktu nya, cara kerjanya, dan juga menyebarkan formula ilmiah mesin waktu tersebut di forum.
Beberapa orang di forum mulai memberondong John Titor dgn beragam pertanyaan, kesimpulan yang di dapat bahwa JOhn Titor adalah orang yg cerdas dan mempunya ilmu pengetahuan science yg mendalam, meski JOhn mengaku spesialisasi di History bukan di bidang komputer maupun science.
Siapa JOhn Titor ? Dia mengaku lahir tahun 1998 di florida, dia mengemban tugas dari tahun 2036 untuk ke tahun 1975 tuk mengambil PC IBM 5100, yg menurut dia dimana pc itu terdapat bahasa unix yg dpt memecahkan beragam bahasa unix. menurut dia teknologi di pc itu hanya seglintir org ibm saja yg tahu dan teknologi itu tidak pernah lagi di pasang di pc generasi selanjut nya hingga 2036.
Sabtu, 25 Februari 2012
Dampak Positif dan Negatif Game Online
Dampak Positif dan Negatif Game Online. Arus globalisasi saat ini semakin luas dan berkembang dengan cepat, tak terkecuali di dunia maya / dunia internet, dunia yang luas tak terbatas dengan segala sesuatunya bermunculan di dalam sana. Ada dampak positif ada juga dampak negatif yang terkandung di dalamnya.
Dunia internet saat ini sudah banyak di kenal di kalangan para anak – anak, remaja hingga orang tua sekalipun atau bisa di bilang hampir semua kalangan bisa menggunakan internet. Akses internet bisa digunakan berbagai macam, seperti Browsing untuk mencari sumber informasi, sarana dalam mencari pundi pundi dollar dengan ngeblog, bertukar fikiran di forum forum, saling bersilaturahmi dengan social network seperti facebook, twitter dsb dan jika sudah bosan dengan segala aktivitas online lainnya, bisa memanfaatkan fasilitas game online yang sudah banyak bertebaran di jagat maya ini.
Kali ini akan menulis mengenai apa sih Dampak Positif dan Negatif Game Online itu ? Ya, mengapa dan ada apa dengan game online ? Game Online merupakan game yang saat ini sudah sangat maju dengan memanfaatkan koneksi internet sebagai jembatan penghubung antar para user (gamer) yang memainkan game online tersebut atau game yang bisa dimainkan hanya saat online (terkoneksi dengan jaringan internet).
Dampak Positif Game Online. Dampak positif dalam bermain game online ini yaitu dampak yang bisa dibilang memberi manfaat / pengaruh baik bagi penggunanya. Dampak positif Game Online bisa seperti berikut:
- Hiburan. Dengan memanfaatkan sebuah permainan bisa untuk mencoba mengurangi stress akibat aktivitas yang telah kita lalui / untuk menghilangkan kebosanan mengenai kegiatan yang ‘itu itu’ saja.
- Bisa untuk ajang melatih konsentrasi (misal dalam game game action, dibutuhkan konsentrasi saat menembak, sembunyi ataupun lari). Tentunya game yang baik.
- Ajang menambah kawan. Dengan bermain game online (game online yang berhubungan dengan user lainnya) bisa menambah teman di dunia maya. Saling tegur sapa dan bisa untuk menjalin tali silaturahmi (misal tukeran link facebook, twitter dll ), walaupun itu lawan di game online, namun nantinya bisa jadi kawan di dunia internet lainnya (misal facebook / jejaring sosial lainnya).
Selain dampak positif game online ada juga dampak negatif dari game online, yaitu dampak yang kurang baik bagi para pengguna game online tersebut. Seperti:
- Tidak Kenal Waktu / Lupa Waktu. Kebanyakan dari para gamer yang sudah hobi dalam memainkan game game online yang ada sering kelupaan waktu untuk rutinitas kegiatan lainnya. Misal, waktu makan lupa untuk ngegame online ke warnet, akibatnya perut sakit dsb. . .
- Pemborosan. Mengapa kok pemborosan? Ya, kalau untuk para gamer yang sudah bisa mencari penghasilan sendiri sih, ini belum terlalu masalah. Namun jika masih meminta kepada orangtua, misal 1 jam = 5000 rupiah main game online sekitar 2 – 4 jam, 5ooo x 4 jam = 20rbu. Nah, bagaimana kalau sudah tidak ada uang lagi untuk main game online dan orang tua tidak memberi uang ke kalian untuk main game online ? Itu baru sekali main game, misal main game setiap hari selama sebulan sudah habis berapa coba uang yang di keluarkan untuk main game online ? Apa tidak kasihan sama orang tua yang bekerja keras untuk mensekolahkan kita agar menjadi generasi penerus bangsa ?
- Lupa Kewajiban. Ini mungkin masih berkaitan dengan no 1. Sepertinya kebanyakan dari pemain game online ini masih kisaran anak – anak sampai remaja (pelajar), (walaupun ada juga sih orang dewasa – orang tua juga yg memainkan game online ini). Kewajiban para pelajar yaitu belajar. Dengan keseringan, dampak buruk nya yaitu waktu belajar semakin berkurang. Selain itu kita juga mempunyai kewajiban terhadap Agama. Dan kewajiban lainnya yang patutnya di laksanakan sebagaimana mestinya.
Selasa, 21 Februari 2012
Medan elektromagnetik
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Dalam fisika elektromagnetisme, sebuah medan elektromagnetik adalah sebuah medan terdiri dari dua medan vektor yang berhubungan: medan listrik dan medan magnet. Ketika dibilang medan elektromagnetik, medan tersebut dibayangkan mencakup seluruh ruang; biasanya medan elektromagnetik hanya terbatas di sebuah daerah kecil di sekitar objek dalam ruang.
Vektor (E dan B) yang merupakan karakter medan masing-masing memiliki sebuah nilai yang didefinisikan pada setiap titik ruang dan waktu. Bila hanya medan listrik (E) bukan nol, dan konstan dalam waktu, medan ini dikatak sebuah medan elektrostatik. E dan B (medan magnet) dihubungkan dengan persamaan Maxwell.
Medan elektromagnetik dapat dijelaskan dengan sebuah dasar kuantum oleh elektrodinamika kuantum.
Sabtu, 18 Februari 2012
Magnet
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Kata magnet (magnit) berasal dari bahasa Yunani magnÃtis lÃthos yang berarti batu Magnesian.Magnesia adalah nama sebuah wilayah di Yunani pada masa lalu yang kini bernama Manisa(sekarang berada di wilayah Turki) di mana terkandung batu magnet yang ditemukan sejak zaman dulu di wilayah tersebut.
Pada saat ini, suatu magnet adalah suatu materi yang mempunyai suatu medan magnet. Materi tersebut bisa dalam berwujud magnet tetap atau magnet tidak tetap. Magnet yang sekarang ini ada hampir semuanya adalah magnet buatan.
Magnet selalu memiliki dua kutub yaitu: kutub utara (north/ N) dan kutub selatan (south/ S). Walaupun magnet itu dipotong-potong, potongan magnet kecil tersebut akan tetap memiliki dua kutub.
Magnet dapat menarik benda lain. Beberapa benda bahkan tertarik lebih kuat dari yang lain, yaitu bahan logam. Namun tidak semua logam mempunyai daya tarik yang sama terhadap magnet. Besi dan baja adalah dua contoh materi yang mempunyai daya tarik yang tinggi oleh magnet. Sedangkan oksigen cair adalah contoh materi yang mempunyai daya tarik yang rendah oleh magnet.
Satuan intensitas magnet menurut sistem metrik pada Satuan Internasional (SI) adalah Tesla dan SI unit untuk total fluks magnetik adalahweber. 1 weber/m^2 = 1 tesla, yang memengaruhi satu meter persegi.
Jenis magnet
Magnet tetap
Magnet tetap tidak memerlukan tenaga atau bantuan dari luar untuk menghasilkan daya magnet (berelektromagnetik).
Jenis magnet tetap selama ini yang diketahui terdapat pada:
- Magnet neodymium, merupakan magnet tetap yang paling kuat. Magnet neodymium (juga dikenal sebagai NdFeB, NIB, atau magnet Neo), merupakan sejenis magnet tanah jarang, terbuat dari campuran logam neodymium,
- Magnet Samarium-Cobalt: salah satu dari dua jenis magnet bumi yang langka, merupakan magnet permanen yang kuat yang terbuat dari paduan samarium dan kobalt.
- Ceramic Magnets
- Plastic Magnets
- Alnico Magnets
Magnet tidak tetap
Magnet tidak tetap (remanen) tergantung pada medan listrik untuk menghasilkan medan magnet. Contoh magnet tidak tetap adalahelektromagnet.
Magnet buatan
Magnet buatan meliputi hampir seluruh magnet yang ada sekarang ini.
Bentuk magnet buatan antara lain:
- Magnet U
- Magnet ladam
- Magnet batang
- Magnet lingkaran
- Magnet jarum (kompas)
Cara membuat magnet
Cara membuat magnet antara lain:
- Digosok dengan magnet lain secara searah.
- Induksi magnet.
- Magnet diletakkan pada solenoida(kumparan kawat berbentuk tabung panjang dengan lilitan yang sangat rapat) dan dialiri arus listrik searah (DC).
Bahan yang biasa dijadikan magnet adalah]. Besi lebih mudah untuk dijadikan magnet daripada baja. Tapi sifat kemagnetan besi lebih mudah hilang daripada baja. Oleh sebab itu, besi lebih sering digunakan untuk membuat elektromagnet.
Menghilangkan sifat kemagnetan
Cara menghilangkan sifat kemagnetan antara lain:
- Dibakar.
- Dibanting-banting.
- Dipukul-pukul.
- Magnet diletakkan pada solenoida(kumparan kawat berbentuk tabung panjang dengan lilitan yang sangat rapat) dan dialiri arus listrik bolak-balik (AC).
Senin, 13 Februari 2012
Sabtu, 11 Februari 2012
Tata Surya
TataSurya[a] adalah kumpulan benda langit yang terdiri atas sebuahbintang yang disebut Matahari dan semua objek yang terikat oleh gayagravitasinya. Objek-objek tersebut termasuk delapan buah planet yang sudah diketahui dengan orbit berbentuk elips, lima planet kerdil/katai, 173satelit alami yang telah diidentifikasi[b], dan jutaan benda langit (meteor,asteroid, komet) lainnya.
Tata Surya terbagi menjadi Matahari, empat planet bagian dalam, sabuk asteroid, empat planet bagian luar, dan di bagian terluar adalah Sabuk Kuiper dan piringan tersebar. Awan Oort diperkirakan terletak di daerah terjauh yang berjarak sekitar seribu kali di luar bagian yang terluar.
Berdasarkan jaraknya dari Matahari, kedelapan planet Tata Surya ialahMerkurius (57,9 juta km), Venus (108 juta km), Bumi (150 juta km), Mars(228 juta km), Yupiter (779 juta km), Saturnus (1.430 juta km), Uranus(2.880 juta km), dan Neptunus (4.500 juta km). Sejak pertengahan 2008, ada lima objek angkasa yang diklasifikasikan sebagai planet kerdil. Orbit planet-planet kerdil, kecuali Ceres, berada lebih jauh dari Neptunus. Kelima planet kerdil tersebut ialah Ceres (415 juta km. di sabuk asteroid; dulunya diklasifikasikan sebagai planet kelima), Pluto(5.906 juta km.; dulunya diklasifikasikan sebagai planet kesembilan), Haumea (6.450 juta km),Makemake (6.850 juta km), dan Eris (10.100 juta km).
Enam dari kedelapan planet dan tiga dari kelima planet kerdil itu dikelilingi oleh satelit alami. Masing-masing planet bagian luar dikelilingi oleh cincin planet yang terdiri dari debu dan partikel lain.
Asal usul
Banyak hipotesis tentang asal usul Tata Surya telah dikemukakan para ahli, beberapa di antaranya adalah:
Pierre-Simon Laplace, pendukung Hipotesis Nebula
Gerard Kuiper, pendukung Hipotesis KondensasiHipotesis Nebula
Hipotesis nebula pertama kali dikemukakan oleh Emanuel Swedenborg (1688-1772)[1] tahun 1734 dan disempurnakan oleh Immanuel Kant (1724-1804) pada tahun 1775. Hipotesis serupa juga dikembangkan olehPierre Marquis de Laplace[2] secara independen pada tahun 1796. Hipotesis ini, yang lebih dikenal dengan Hipotesis Nebula Kant-Laplace, menyebutkan bahwa pada tahap awal, Tata Surya masih berupa kabut raksasa. Kabut ini terbentuk dari debu, es, dan gas yang disebut nebula, dan unsur gas yang sebagian besar hidrogen. Gaya gravitasi yang dimilikinya menyebabkan kabut itu menyusut dan berputar dengan arah tertentu, suhu kabut memanas, dan akhirnya menjadi bintang raksasa (matahari). Matahari raksasa terus menyusut dan berputar semakin cepat, dan cincin-cincin gas dan es terlontar ke sekeliling Matahari. Akibat gaya gravitasi, gas-gas tersebut memadat seiring dengan penurunan suhunya dan membentuk planet dalam dan planet luar. Laplace berpendapat bahwa orbit berbentuk hampir melingkar dari planet-planet merupakan konsekuensi dari pembentukan mereka.[3]Hipotesis Planetisimal
Hipotesis planetisimal pertama kali dikemukakan oleh Thomas C. Chamberlin dan Forest R. Moulton pada tahun1900. Hipotesis planetisimal mengatakan bahwa Tata Surya kita terbentuk akibat adanya bintang lain yang lewat cukup dekat dengan Matahari, pada masa awal pembentukan Matahari. Kedekatan tersebut menyebabkan terjadinya tonjolan pada permukaan Matahari, dan bersama proses internal Matahari, menarik materi berulang kali dari Matahari. Efek gravitasi bintang mengakibatkan terbentuknya dua lengan spiral yang memanjang dari Matahari. Sementara sebagian besar materi tertarik kembali, sebagian lain akan tetap di orbit, mendingin dan memadat, dan menjadi benda-benda berukuran kecil yang mereka sebut planetisimal dan beberapa yang besar sebagai protoplanet. Objek-objek tersebut bertabrakan dari waktu ke waktu dan membentuk planet dan bulan, sementara sisa-sisa materi lainnya menjadi komet dan asteroid.Hipotesis Pasang Surut Bintang
Hipotesis pasang surut bintang pertama kali dikemukakan oleh James Jeans pada tahun 1917. Planet dianggap terbentuk karena mendekatnya bintang lain kepada Matahari. Keadaan yang hampir bertabrakan menyebabkan tertariknya sejumlah besar materi dari Matahari dan bintang lain tersebut oleh gaya pasang surut bersama mereka, yang kemudian terkondensasi menjadi planet.[3] Namun astronom Harold Jeffreys tahun 1929 membantah bahwa tabrakan yang sedemikian itu hampir tidak mungkin terjadi.[3] Demikian pula astronom Henry Norris Russell mengemukakan keberatannya atas hipotesis tersebut.[4]Hipotesis Kondensasi
Hipotesis kondensasi mulanya dikemukakan oleh astronom Belanda yang bernama G.P. Kuiper (1905-1973) pada tahun 1950. Hipotesis kondensasi menjelaskan bahwa Tata Surya terbentuk dari bola kabut raksasa yang berputar membentuk cakram raksasa.Hipotesis Bintang Kembar
Hipotesis bintang kembar awalnya dikemukakan oleh Fred Hoyle (1915-2001) pada tahun 1956. Hipotesis mengemukakan bahwa dahulunya Tata Surya kita berupa dua bintang yang hampir sama ukurannya dan berdekatan yang salah satunya meledak meninggalkan serpihan-serpihan kecil. Serpihan itu terperangkap oleh gravitasi bintang yang tidak meledak dan mulai mengelilinginya.
Sejarah penemuan
Lima planet terdekat ke Matahari selain Bumi (Merkurius, Venus, Mars, Yupiter dan Saturnus) telah dikenal sejak zaman dahulu karena mereka semua bisa dilihat dengan mata telanjang. Banyak bangsa di dunia ini memiliki nama sendiri untuk masing-masing planet.
Perkembangan ilmu pengetahuan dan teknologi pengamatan pada lima abad lalu membawa manusia untuk memahami benda-benda langit terbebas dari selubung mitologi. Galileo Galilei (1564-1642) dengan teleskop refraktornya mampu menjadikan mata manusia "lebih tajam" dalam mengamati benda langit yang tidak bisa diamati melalui mata telanjang.
Karena teleskop Galileo bisa mengamati lebih tajam, ia bisa melihat berbagai perubahan bentuk penampakan Venus, seperti Venus Sabit atau Venus Purnama sebagai akibat perubahan posisi Venus terhadap Matahari. Penalaran Venus mengitari Matahari makin memperkuat teori heliosentris, yaitu bahwa Matahari adalah pusat alam semesta, bukan Bumi, yang sebelumnya digagas oleh Nicolaus Copernicus(1473-1543). Susunan heliosentris adalah Matahari dikelilingi oleh Merkurius hingga Saturnus.
Model heliosentris dalammanuskrip Copernicus.
Teleskop Galileo terus disempurnakan oleh ilmuwan lain seperti Christian Huygens (1629-1695) yang menemukan Titan, satelit Saturnus, yang berada hampir 2 kali jarak orbit Bumi-Yupiter.
Perkembangan teleskop juga diimbangi pula dengan perkembangan perhitungan gerak benda-benda langit dan hubungan satu dengan yang lain melalui Johannes Kepler (1571-1630) dengan Hukum Kepler. Dan puncaknya,Sir Isaac Newton (1642-1727) dengan hukum gravitasi. Dengan dua teori perhitungan inilah yang memungkinkan pencarian dan perhitungan benda-benda langit selanjutnya
Pada 1781, William Herschel (1738-1822) menemukan Uranus. Perhitungan cermat orbit Uranus menyimpulkan bahwa planet ini ada yang mengganggu. Neptunus ditemukan pada Agustus 1846. Penemuan Neptunus ternyata tidak cukup menjelaskan gangguan orbit Uranus. Pluto kemudian ditemukan pada 1930.
Pada saat Pluto ditemukan, ia hanya diketahui sebagai satu-satunya objek angkasa yang berada setelah Neptunus. Kemudian pada 1978, Charon, satelit yang mengelilingi Pluto ditemukan, sebelumnya sempat dikira sebagai planet yang sebenarnya karena ukurannya tidak berbeda jauh dengan Pluto.
Para astronom kemudian menemukan sekitar 1.000 objek kecil lainnya yang letaknya melampaui Neptunus (disebut objek trans-Neptunus), yang juga mengelilingi Matahari. Di sana mungkin ada sekitar 100.000 objek serupa yang dikenal sebagai Objek Sabuk Kuiper (Sabuk Kuiper adalah bagian dari objek-objek trans-Neptunus). Belasan benda langit termasuk dalam Objek Sabuk Kuiper di antaranya Quaoar (1.250 km pada Juni 2002), Huya (750 km pada Maret 2000), Sedna (1.800 km pada Maret 2004), Orcus, Vesta, Pallas, Hygiea, Varuna, dan2003 EL61 (1.500 km pada Mei 2004).
Penemuan 2003 EL61 cukup menghebohkan karena Objek Sabuk Kuiper ini diketahui juga memiliki satelit pada Januari 2005 meskipun berukuran lebih kecil dari Pluto. Dan puncaknya adalah penemuan UB 313 (2.700 km pada Oktober 2003) yang diberi nama oleh penemunyaXena. Selain lebih besar dari Pluto, objek ini juga memiliki satelit.
Struktur
Perbanding relatif massa planet. Yupiter adalah 71% dari total dan Saturnus 21%. Merkurius dan Mars, yang total bersama hanya kurang dari 0.1% tidak nampak dalam diagram di atas.
Orbit-orbit Tata Surya dengan skala yang sesungguhnya
Illustrasi skala
Komponen utama sistem Tata Surya adalah matahari, sebuah bintang deret utamakelas G2 yang mengandung 99,86 persen massa dari sistem dan mendominasi seluruh dengan gaya gravitasinya.[5] Yupiter dan Saturnus, dua komponen terbesar yang mengedari Matahari, mencakup kira-kira 90 persen massa selebihnya.[c]
Hampir semua objek-objek besar yang mengorbit Matahari terletak pada bidang edaran bumi, yang umumnya dinamai ekliptika. Semua planet terletak sangat dekat pada ekliptika, sementara komet dan objek-objek sabuk Kuiper biasanya memiliki beda sudut yang sangat besar dibandingkan ekliptika.
Planet-planet dan objek-objek Tata Surya juga mengorbit mengelilingi Matahari berlawanan dengan arah jarum jam jika dilihat dari atas kutub utara Matahari, terkecuali Komet Halley.
Hukum Gerakan Planet Kepler menjabarkan bahwa orbit dari objek-objek Tata Surya sekeliling Matahari bergerak mengikuti bentuk elips dengan Matahari sebagai salah satu titik fokusnya. Objek yang berjarak lebih dekat dari Matahari (sumbu semi-mayor-nya lebih kecil) memiliki tahun waktu yang lebih pendek. Pada orbit elips, jarak antara objek dengan Matahari bervariasi sepanjang tahun. Jarak terdekat antara objek dengan Matahari dinamai perihelion, sedangkan jarak terjauh dari Matahari dinamai aphelion. Semua objek Tata Surya bergerak tercepat di titik perihelion dan terlambat di titik aphelion. Orbit planet-planet bisa dibilang hampir berbentuk lingkaran, sedangkan komet, asteroid dan objek sabuk Kuiper kebanyakan orbitnya berbentuk elips.
Untuk mempermudah representasi, kebanyakan diagram Tata Surya menunjukan jarak antara orbit yang sama antara satu dengan lainnya. Pada kenyataannya, dengan beberapa perkecualian, semakin jauh letak sebuah planet atau sabuk dari Matahari, semakin besar jarak antara objek itu dengan jalur edaran orbit sebelumnya. Sebagai contoh, Venus terletak sekitar sekitar 0,33 satuan astronomi(SA) lebih dari Merkurius[d], sedangkan Saturnus adalah 4,3 SA dari Yupiter, danNeptunus terletak 10,5 SA dari Uranus. Beberapa upaya telah dicoba untuk menentukan korelasi jarak antar orbit ini (hukum Titus-Bode), tetapi sejauh ini tidak satu teori pun telah diterima.
Hampir semua planet-planet di Tata Surya juga memiliki sistem sekunder. Kebanyakan adalah benda pengorbit alami yang disebut satelit. Beberapa benda ini memiliki ukuran lebih besar dari planet. Hampir semua satelit alami yang paling besar terletak di orbit sinkron, dengan satu sisi satelit berpaling ke arah planet induknya secara permanen. Empat planet terbesar juga memliki cincin yang berisi partikel-partikel kecil yang mengorbit secara serempak.
Terminologi
Secara informal, Tata Surya dapat dibagi menjadi tiga daerah. Tata Surya bagian dalam mencakup empat planet kebumian dan sabuk asteroid utama. Pada daerah yang lebih jauh, Tata Surya bagian luar, terdapat empat gas planet raksasa.[6] Sejak ditemukannya Sabuk Kuiper, bagian terluar Tata Surya dianggap wilayah berbeda tersendiri yang meliputi semua objek melampaui Neptunus.[7]
Secara dinamis dan fisik, objek yang mengorbit matahari dapat diklasifikasikan dalam tiga golongan: planet, planet kerdil, dan benda kecil Tata Surya. Planet adalah sebuah badan yang mengedari Matahari dan mempunyai massa cukup besar untuk membentuk bulatan diri dan telah membersihkan orbitnya dengan menginkorporasikan semua objek-objek kecil di sekitarnya. Dengan definisi ini, Tata Surya memiliki delapan planet: Merkurius, Venus, Bumi, Mars, Yupiter, Saturnus, dan Neptunus. Pluto telah dilepaskan status planetnya karena tidak dapat membersihkan orbitnya dari objek-objek Sabuk Kuiper.[8]
Planet kerdil adalah benda angkasa bukan satelit yang mengelilingi Matahari, mempunyai massa yang cukup untuk bisa membentuk bulatan diri tetapi belum dapat membersihkan daerah sekitarnya.[8] Menurut definisi ini, Tata Surya memiliki lima buah planet kerdil: Ceres, Pluto,Haumea, Makemake, dan Eris.[9] Objek lain yang mungkin akan diklasifikasikan sebagai planet kerdil adalah: Sedna, Orcus, dan Quaoar. Planet kerdil yang memiliki orbit di daerah trans-Neptunus biasanya disebut "plutoid".[10] Sisa objek-objek lain berikutnya yang mengitari Matahari adalah benda kecil Tata Surya.[8]
Ilmuwan ahli planet menggunakan istilah gas, es, dan batu untuk mendeskripsi kelas zat yang terdapat di dalam Tata Surya. Batu digunakan untuk menamai bahan bertitik lebur tinggi (lebih besar dari 500 K), sebagai contoh silikat. Bahan batuan ini sangat umum terdapat di Tata Surya bagian dalam, merupakan komponen pembentuk utama hampir semua planet kebumian dan asteroid. Gas adalah bahan-bahan bertitik lebur rendah seperti atom hidrogen, helium, dan gas mulia, bahan-bahan ini mendominasi wilayah tengah Tata Surya, yang didominasi oleh Yupiter dan Saturnus. Sedangkan es, seperti air, metana, amonia dan karbon dioksida,[11] memiliki titik lebur sekitar ratusan derajat kelvin. Bahan ini merupakan komponen utama dari sebagian besar satelit planet raksasa. Ia juga merupakan komponen utama Uranus danNeptunus (yang sering disebut "es raksasa"), serta berbagai benda kecil yang terletak di dekat orbit Neptunus.[12]
Istilah volatiles mencakup semua bahan bertitik didih rendah (kurang dari ratusan kelvin), yang termasuk gas dan es; tergantung pada suhunya, 'volatiles' dapat ditemukan sebagai es, cairan, atau gas di berbagai bagian Tata Surya.
Zona planet
Zona Tata Surya yang meliputi, planet bagian dalam, sabuk asteroid, planet bagian luar, dan sabuk Kuiper. (Gambar tidak sesuai skala)
Di zona planet dalam, Matahari adalah pusat Tata Surya dan letaknya paling dekat dengan planet Merkurius (jarak dari Matahari 57,9 × 106 km, atau 0,39 SA), Venus(108,2 × 106 km, 0,72 SA), Bumi (149,6 × 106 km, 1 SA) danMars (227,9 × 106 km, 1,52 SA). Ukuran diameternya antara 4.878 km dan 12.756 km, dengan massa jenis antara 3,95 g/cm3 dan 5,52 g/cm3.
Antara Mars dan Yupiter terdapat daerah yang disebut sabuk asteroid, kumpulan batuan metal dan mineral. Kebanyakan asteroid-asteroid ini hanya berdiameter beberapa kilometer (lihat: Daftar asteroid), dan beberapa memiliki diameter 100 km atau lebih. Ceres, bagian dari kumpulan asteroid ini, berukuran sekitar 960 km dan dikategorikan sebagai planet kerdil. Orbit asteroid-asteroid ini sangat eliptis, bahkan beberapa menyimpangi Merkurius (Icarus) dan Uranus (Chiron).
Pada zona planet luar, terdapat planet gas raksasa Yupiter (778,3 × 106 km, 5,2 SA), Uranus (2,875 × 109 km, 19,2 SA) dan Neptunus(4,504 × 109 km, 30,1 SA) dengan massa jenis antara 0,7 g/cm3 dan 1,66 g/cm3.
Jarak rata-rata antara planet-planet dengan Matahari bisa diperkirakan dengan menggunakan baris matematis Titus-Bode. Regularitas jarak antara jalur edaran orbit-orbit ini kemungkinan merupakan efek resonansi sisa dari awal terbentuknya Tata Surya. Anehnya, planet Neptunustidak muncul di baris matematis Titus-Bode, yang membuat para pengamat berspekulasi bahwa Neptunus merupakan hasil tabrakan kosmis.
Matahari
Artikel utama untuk bagian ini adalah: Matahari
Matahari dilihat dari spektrum sinar-X
Matahari adalah bintang induk Tata Surya dan merupakan komponen utama sistem Tata Surya ini.Bintang ini berukuran 332.830 massa bumi. Massa yang besar ini menyebabkan kepadatan inti yang cukup besar untuk bisa mendukung kesinambungan fusi nuklir dan menyemburkan sejumlah energi yang dahsyat. Kebanyakan energi ini dipancarkan ke luar angkasa dalam bentuk radiasi eletromagnetik, termasuk spektrum optik.
Matahari dikategorikan ke dalam bintang kerdil kuning (tipe G V) yang berukuran tengahan, tetapi nama ini bisa menyebabkan kesalahpahaman, karena dibandingkan dengan bintang-bintang yang ada di dalam galaksi Bima Sakti, Matahari termasuk cukup besar dan cemerlang. Bintang diklasifikasikan dengan diagram Hertzsprung-Russell, yaitu sebuah grafik yang menggambarkan hubungan nilailuminositas sebuah bintang terhadap suhu permukaannya. Secara umum, bintang yang lebih panas akan lebih cemerlang. Bintang-bintang yang mengikuti pola ini dikatakan terletak pada deret utama, dan Matahari letaknya persis di tengah deret ini. Akan tetapi, bintang-bintang yang lebih cemerlang dan lebih panas dari Matahari adalah langka, sedangkan bintang-bintang yang lebih redup dan dingin adalah umum.[13]
Dipercayai bahwa posisi Matahari pada deret utama secara umum merupakan "puncak hidup" dari sebuah bintang, karena belum habisnya hidrogen yang tersimpan untuk fusi nuklir. Saat ini Matahari tumbuh semakin cemerlang. Pada awal kehidupannya, tingkat kecemerlangannya adalah sekitar 70 persen dari kecermelangan sekarang.[14]
Matahari secara metalisitas dikategorikan sebagai bintang "populasi I". Bintang kategori ini terbentuk lebih akhir pada tingkat evolusi alam semesta, sehingga mengandung lebih banyak unsur yang lebih berat daripada hidrogen dan helium ("metal" dalam sebutan astronomi) dibandingkan dengan bintang "populasi II".[15] Unsur-unsur yang lebih berat daripada hidrogen dan helium terbentuk di dalam inti bintang purba yang kemudian meledak. Bintang-bintang generasi pertama perlu punah terlebih dahulu sebelum alam semesta dapat dipenuhi oleh unsur-unsur yang lebih berat ini.
Bintang-bintang tertua mengandung sangat sedikit metal, sedangkan bintang baru mempunyai kandungan metal yang lebih tinggi. Tingkat metalitas yang tinggi ini diperkirakan mempunyai pengaruh penting pada pembentukan sistem Tata Surya, karena terbentuknya planet adalah hasil penggumpalan metal.[16]
Medium antarplanet
Lembar aliran heliosfer, karena gerak rotasi magnetis Matahari terhadap medium antarplanet.
Di samping cahaya, matahari juga secara berkesinambungan memancarkan semburan partikel bermuatan (plasma) yang dikenal sebagai angin surya. Semburan partikel ini menyebar keluar kira-kira pada kecepatan 1,5 juta kilometer per jam,[17] menciptakan atmosfer tipis (heliosfer) yang merambah Tata Surya paling tidak sejauh 100 SA (lihat juga heliopause). Kesemuanya ini disebutmedium antarplanet.
Badai geomagnetis pada permukaan Matahari, seperti semburan Matahari (solar flares) danlontaran massa korona (coronal mass ejection) menyebabkan gangguan pada heliosfer, menciptakan cuaca ruang angkasa.[18] Struktur terbesar dari heliosfer dinamai lembar aliran heliosfer (heliospheric current sheet), sebuah spiral yang terjadi karena gerak rotasi magnetis Matahari terhadap medium antarplanet.[19][20] Medan magnet bumi mencegah atmosfer bumiberinteraksi dengan angin surya. Venus dan Mars yang tidak memiliki medan magnet, atmosfernya habis terkikis ke luar angkasa.[21] Interaksi antara angin surya dan medan magnet bumi menyebabkan terjadinya aurora, yang dapat dilihat dekat kutub magnetik bumi.
Heliosfer juga berperan melindungi Tata Surya dari sinar kosmik yang berasal dari luar Tata Surya. Medan magnet planet-planet menambah peran perlindungan selanjutnya. Densitas sinar kosmik pada medium antarbintang dan kekuatan medan magnet Matahari mengalami perubahan pada skala waktu yang sangat panjang, sehingga derajat radiasi kosmis di dalam Tata Surya sendiri adalah bervariasi, meski tidak diketahui seberapa besar.[22]
Medium antarplanet juga merupakan tempat beradanya paling tidak dua daerah mirip piringan yang berisi debu kosmis. Yang pertama, awan debu zodiak, terletak di Tata Surya bagian dalam dan merupakan penyebab cahaya zodiak. Ini kemungkinan terbentuk dari tabrakan dalamsabuk asteroid yang disebabkan oleh interaksi dengan planet-planet.[23] Daerah kedua membentang antara 10 SA sampai sekitar 40 SA, dan mungkin disebabkan oleh tabrakan yang mirip tetapi tejadi di dalam Sabuk Kuiper.[24][25]
Tata Surya bagian dalam
Tata Surya bagian dalam adalah nama umum yang mencakup planet kebumian dan asteroid. Terutama terbuat dari silikat dan logam, objek dari Tata Surya bagian dalam melingkup dekat dengan matahari, radius dari seluruh daerah ini lebih pendek dari jarak antara Yupiter dan Saturnus.
Planet-planet bagian dalam
Planet-planet bagian dalam. Dari kiri ke kanan: Merkurius, Venus, Bumi, dan Mars(ukuran menurut skala)
Empat planet bagian dalam atau planet kebumian (terrestrial planet) memiliki komposisi batuan yang padat, hampir tidak mempunyai atau tidak mempunyai satelit dan tidak mempunyai sistem cincin. Komposisi Planet-planet ini terutama adalah mineral bertitik leleh tinggi, seperti silikat yang membentuk kerak dan selubung, dan logam seperti besi dan nikel yang membentuk intinya. Tiga dari empat planet ini (Venus, Bumi dan Mars) memiliki atmosfer, semuanya memiliki kawah meteor dan sifat-sifat permukaan tektonis seperti gunung berapi dan lembah pecahan. Planet yang letaknya di antara Matahari dan bumi (Merkurius dan Venus) disebut juga planet inferior.
Merkurius
Merkurius (0,4 SA dari Matahari) adalah planet terdekat dari Matahari serta juga terkecil (0,055 massa bumi). Merkurius tidak memiliki satelit alami dan ciri geologisnya di samping kawah meteorid yang diketahui adalah lobed ridges atau rupes, kemungkinan terjadi karena pengerutan pada perioda awal sejarahnya.[26] Atmosfer Merkurius yang hampir bisa diabaikan terdiri dari atom-atom yang terlepas dari permukaannya karena semburan angin surya.[27] Besarnya inti besi dan tipisnya kerak Merkurius masih belum bisa dapat diterangkan. Menurut dugaan hipotesa lapisan luar planet ini terlepas setelah terjadi tabrakan raksasa, dan perkembangan ("akresi") penuhnya terhambat oleh energi awal Matahari.[28][29]
Venus
Venus (0,7 SA dari Matahari) berukuran mirip bumi (0,815 massa bumi). Dan seperti bumi, planet ini memiliki selimut kulit silikat yang tebal dan berinti besi, atmosfernya juga tebal dan memiliki aktivitas geologi. Akan tetapi planet ini lebih kering dari bumi dan atmosfernya sembilan kali lebih padat dari bumi. Venus tidak memiliki satelit. Venus adalah planet terpanas dengan suhu permukaan mencapai 400 °C, kemungkinan besar disebabkan jumlah gas rumah kaca yang terkandung di dalam atmosfer.[30] Sejauh ini aktivitas geologis Venus belum dideteksi, tetapi karena planet ini tidak memiliki medan magnet yang bisa mencegah habisnya atmosfer, diduga sumber atmosfer Venus berasal dari gunung berapi.[31]
Bumi
Bumi (1 SA dari Matahari) adalah planet bagian dalam yang terbesar dan terpadat, satu-satunya yang diketahui memiliki aktivitas geologi dan satu-satunya planet yang diketahui memiliki mahluk hidup. Hidrosfer-nya yang cair adalah khas di antara planet-planet kebumian dan juga merupakan satu-satunya planet yang diamati memiliki lempeng tektonik. Atmosfer bumi sangat berbeda dibandingkan planet-planet lainnya, karena dipengaruhi oleh keberadaan mahluk hidup yang menghasilkan 21% oksigen.[32] Bumi memiliki satu satelit,bulan, satu-satunya satelit besar dari planet kebumian di dalam Tata Surya.
Mars
Mars (1,5 SA dari Matahari) berukuran lebih kecil dari bumi dan Venus (0,107 massa bumi). Planet ini memiliki atmosfer tipis yang kandungan utamanya adalah karbon dioksida. Permukaan Mars yang dipenuhi gunung berapi raksasa seperti Olympus Mons dan lembah retakan seperti Valles marineris, menunjukan aktivitas geologis yang terus terjadi sampai baru belakangan ini. Warna merahnya berasal dari warna karat tanahnya yang kaya besi.[33] Mars mempunyai dua satelit alami kecil (Deimos dan Phobos) yang diduga merupakan asteroid yang terjebak gravitasi Mars.[34]
Sabuk asteroid
Sabuk asteroid utama dan asteroid Troya
Asteroid secara umum adalah objek Tata Surya yang terdiri dari batuan dan mineral logam beku.[35]
Sabuk asteroid utama terletak di antara orbit Mars dan Yupiter, berjarak antara 2,3 dan 3,3 SA dari matahari, diduga merupakan sisa dari bahan formasi Tata Surya yang gagal menggumpal karena pengaruh gravitasi Yupiter.[36]
Gradasi ukuran asteroid adalah ratusan kilometer sampai mikroskopis. Semua asteroid, kecuali Ceres yang terbesar, diklasifikasikan sebagai benda kecil Tata Surya. Beberapa asteroid seperti Vesta dan Hygiea mungkin akan diklasifikasi sebagai planet kerdil jika terbukti telah mencapai kesetimbangan hidrostatik.[37]
Sabuk asteroid terdiri dari beribu-ribu, mungkin jutaan objek yang berdiameter satu kilometer.[38] Meskipun demikian, massa total dari sabuk utama ini tidaklah lebih dari seperseribu massa bumi.[39] Sabuk utama tidaklah rapat, kapal ruang angkasa secara rutin menerobos daerah ini tanpa mengalami kecelakaan. Asteroid yang berdiameter antara 10 dan 10−4 m disebut meteorid.[40]
Ceres
Ceres
Ceres (2,77 SA) adalah benda terbesar di sabuk asteroid dan diklasifikasikan sebagai planet kerdil. Diameternya adalah sedikit kurang dari 1000 km, cukup besar untuk memiliki gravitasi sendiri untuk menggumpal membentuk bundaran. Ceres dianggap sebagai planet ketika ditemukan pada abad ke 19, tetapi di-reklasifikasi menjadi asteroid pada tahun 1850an setelah observasi lebih lanjut menemukan beberapa asteroid lagi.[41] Ceres direklasifikasi lanjut pada tahun 2006 sebagai planet kerdil.
Kelompok asteroid
Asteroid pada sabuk utama dibagi menjadi kelompok dan keluarga asteroid bedasarkan sifat-sifat orbitnya. satelit asteroid adalah asteroid yang mengedari asteroid yang lebih besar. Mereka tidak mudah dibedakan dari satelit-satelit planet, kadang kala hampir sebesar pasangannya. Sabuk asteroid juga memiliki komet sabuk utama yang mungkin merupakan sumber air bumi.[42]
Asteroid-asteroid Trojan terletak di titik L4 atau L5 Yupiter (daerah gravitasi stabil yang berada di depan dan belakang sebuah orbit planet), sebutan "trojan" sering digunakan untuk objek-objek kecil pada Titik Langrange dari sebuah planet atau satelit. Kelompok Asteroid Hilda terletak di orbit resonansi 2:3 dari Yupiter, yang artinya kelompok ini mengedari Matahari tiga kali untuk setiak dua edaran Yupiter.
Bagian dalam Tata Surya juga dipenuhi oleh asteroid liar, yang banyak memotong orbit-orbit planet planet bagian dalam.
Tata Surya bagian luar
Pada bagian luar dari Tata Surya terdapat gas-gas raksasa dengan satelit-satelitnya yang berukuran planet. Banyak komet berperioda pendek termasuk beberapa Centaur, juga berorbit di daerah ini. Badan-badan padat di daerah ini mengandung jumlah volatil (contoh: air, amonia, metan, yang sering disebut "es" dalam peristilahan ilmu keplanetan) yang lebih tinggi dibandingkan planet batuan di bagian dalam Tata Surya.
Planet-planet luar
Raksasa-raksasa gas dalam Tata Surya dan Matahari, berdasarkan skala
Keempat planet luar, yang disebut juga planet raksasa gas (gas giant), atau planet jovian, secara keseluruhan mencakup 99 persen massa yang mengorbit Matahari. Yupiter dan Saturnus sebagian besar mengandung hidrogen dan helium; Uranus dan Neptunus memiliki proporsi es yang lebih besar. Para astronom mengusulkan bahwa keduanya dikategorikan sendiri sebagai raksasa es.[43] Keempat raksasa gas ini semuanya memiliki cincin, meski hanya sistem cincin Saturnus yang dapat dilihat dengan mudah dari bumi.
Yupiter
Yupiter (5,2 SA), dengan 318 kali massa bumi, adalah 2,5 kali massa dari gabungan seluruh planet lainnya. Kandungan utamanya adalah hidrogen danhelium. Sumber panas di dalam Yupiter menyebabkan timbulnya beberapa ciri semi-permanen pada atmosfernya, sebagai contoh pita pita awan dan Bintik Merah Raksasa. Sejauh yang diketahui Yupiter memiliki 63 satelit. Empat yang terbesar, Ganymede, Callisto, Io, dan Europamenampakan kemiripan dengan planet kebumian, seperti gunung berapi dan inti yang panas.[44] Ganymede, yang merupakan satelit terbesar di Tata Surya, berukuran lebih besar dari Merkurius.
Saturnus
Saturnus (9,5 SA) yang dikenal dengan sistem cincinnya, memiliki beberapa kesamaan dengan Yupiter, sebagai contoh komposisi atmosfernya. Meskipun Saturnus hanya sebesar 60% volume Yupiter, planet ini hanya seberat kurang dari sepertiga Yupiter atau 95 kali massa bumi, membuat planet ini sebuah planet yang paling tidak padat di Tata Surya. Saturnus memiliki 60 satelit yang diketahui sejauh ini (dan 3 yang belum dipastikan) dua di antaranya Titan dan Enceladus, menunjukan activitas geologis, meski hampir terdiri hanya dari es saja.[45] Titan berukuran lebih besar dari Merkurius dan merupakan satu-satunya satelit di Tata Surya yang memiliki atmosfer yang cukup berarti.
Uranus
Uranus (19,6 SA) yang memiliki 14 kali massa bumi, adalah planet yang paling ringan di antara planet-planet luar. Planet ini memiliki kelainan ciri orbit. Uranus mengedari Matahari dengan bujkuran poros 90 derajad pada ekliptika. Planet ini memiliki inti yang sangat dingin dibandingkan gas raksasa lainnya dan hanya sedikit memancarkan energi panas.[46] Uranus memiliki 27 satelit yang diketahui, yang terbesar adalah Titania, Oberon, Umbriel, Ariel dan Miranda.
Neptunus
Neptunus (30 SA) meskipun sedikit lebih kecil dari Uranus, memiliki 17 kali massa bumi, sehingga membuatnya lebih padat. Planet ini memancarkan panas dari dalam tetapi tidak sebanyak Yupiter atau Saturnus.[47] Neptunus memiliki 13 satelit yang diketahui. Yang terbesar, Triton, geologinya aktif, dan memiliki geyser nitrogen cair.[48] Triton adalah satu-satunya satelit besar yang orbitnya terbalik arah (retrogade). Neptunus juga didampingi beberapa planet minor pada orbitnya, yang disebut Trojan Neptunus. Benda-benda ini memiliki resonansi 1:1 dengan Neptunus.
Komet
Artikel utama untuk bagian ini adalah: Komet
Komet Hale-Bopp
Komet adalah badan Tata Surya kecil, biasanya hanya berukuran beberapa kilometer, dan terbuat dari es volatil. Badan-badan ini memiliki eksentrisitas orbit tinggi, secara umum perihelion-nya terletak di planet-planet bagian dalam dan letak aphelion-nya lebih jauh dari Pluto. Saat sebuah komet memasuki Tata Surya bagian dalam, dekatnya jarak dari Matahari menyebabkan permukaan esnya bersumblimasi dan berionisasi, yang menghasilkan koma, ekor gas dan debu panjang, yang sering dapat dilihat dengan mata telanjang.
Komet berperioda pendek memiliki kelangsungan orbit kurang dari dua ratus tahun. Sedangkan komet berperioda panjang memiliki orbit yang berlangsung ribuan tahun. Komet berperioda pendek dipercaya berasal dari Sabuk Kuiper, sedangkan komet berperioda panjang, seperti Hale-bopp, berasal dari Awan Oort. Banyak kelompok komet, seperti Kreutz Sungrazers, terbentuk dari pecahan sebuah induk tunggal.[49] Sebagian komet berorbit hiperbolik mungking berasal dari luar Tata Surya, tetapi menentukan jalur orbitnya secara pasti sangatlah sulit.[50] Komet tua yang bahan volatilesnya telah habis karena panas Matahari sering dikategorikan sebagai asteroid.[51]
Centaur
Centaur adalah benda-benda es mirip komet yang poros semi-majornya lebih besar dari Yupiter(5,5 SA) dan lebih kecil dari Neptunus (30 SA). Centaur terbesar yang diketahui adalah, 10199 Chariklo, berdiameter 250 km.[52] Centaur temuan pertama, 2060 Chiron, juga diklasifikasikan sebagai komet (95P) karena memiliki koma sama seperti komet kalau mendekati Matahari.[53]Beberapa astronom mengklasifikasikan Centaurs sebagai objek sabuk Kuiper sebaran-ke-dalam (inward-scattered Kuiper belt objects), seiring dengan sebaran keluar yang bertempat di piringan tersebar (outward-scattered residents of the scattered disc).[54]
Daerah trans-Neptunus
Plot seluruh objek sabuk Kuiper
Diagram yang menunjukkan pembagian sabuk Kuiper
Daerah yang terletak jauh melampaui Neptunus, atau daerah trans-Neptunus, sebagian besar belum dieksplorasi. Menurut dugaan daerah ini sebagian besar terdiri dari dunia-dunia kecil (yang terbesar memiliki diameter seperlima bumi dan bermassa jauh lebih kecil dari bulan) dan terutama mengandung batu dan es. Daerah ini juga dikenal sebagai daerah luar Tata Surya, meskipun berbagai orang menggunakan istilah ini untuk daerah yang terletak melebihi sabuk asteroid.
Sabuk Kuiper
Artikel utama untuk bagian ini adalah: Sabuk Kuiper
Sabuk Kuiper adalah sebuah cincin raksasa mirip dengan sabuk asteroid, tetapi komposisi utamanya adalah es. Sabuk ini terletak antara 30 dan 50 SA, dan terdiri dari benda kecil Tata Surya. Meski demikian, beberapa objek Kuiper yang terbesar, seperti Quaoar, Varuna, dan Orcus, mungkin akan diklasifikasikan sebagai planet kerdil. Para ilmuwan memperkirakan terdapat sekitar 100.000 objek Sabuk Kuiper yang berdiameter lebih dari 50 km, tetapi diperkirakan massa total Sabuk Kuiper hanya sepersepuluh massa bumi.[55] Banyak objek Kuiper memiliki satelit ganda dan kebanyakan memiliki orbit di luar bidang eliptika.
Sabuk Kuiper secara kasar bisa dibagi menjadi "sabuk klasik" dan resonansi. Resonansi adalah orbit yang terkait pada Neptunus (contoh: dua orbit untuk setiap tiga orbit Neptunus atau satu untuk setiap dua). Resonansi yang pertama bermula pada Neptunus sendiri. Sabuk klasik terdiri dari objek yang tidak memiliki resonansi dengan Neptunus, dan terletak sekitar 39,4 SA sampai 47,7 SA.[56] Anggota dari sabuk klasik diklasifikasikan sebagai cubewanos, setelah anggota jenis pertamanya ditemukan (15760) 1992QB1 [57]
Pluto dan Charon
Pluto dan ketiga satelitnya
Pluto (rata-rata 39 SA), sebuah planet kerdil, adalah objek terbesar sejauh ini di Sabuk Kuiper. Ketika ditemukan pada tahun 1930, benda ini dianggap sebagai planet yang kesembilan, definisi ini diganti pada tahun 2006 dengan diangkatnya definisi formal planet. Pluto memiliki kemiringan orbit cukup eksentrik (17 derajat dari bidang ekliptika) dan berjarak 29,7 SA dari Matahari pada titik prihelion (sejarak orbit Neptunus) sampai 49,5 SA pada titik aphelion.
Tidak jelas apakah Charon, satelit Pluto yang terbesar, akan terus diklasifikasikan sebagai satelit atau menjadi sebuah planet kerdil juga. Pluto dan Charon, keduanya mengedari titik barycentergravitasi di atas permukaannya, yang membuat Pluto-Charon sebuah sistem ganda. Dua satelit yang jauh lebih kecil Nix dan Hydra juga mengedari Pluto dan Charon. Pluto terletak pada sabuk resonan dan memiliki 3:2 resonansi dengan Neptunus, yang berarti Pluto mengedari Matahari dua kali untuk setiap tiga edaran Neptunus. Objek sabuk Kuiper yang orbitnya memiliki resonansi yang sama disebut plutino.[58]
Haumea dan Makemake
Haumea (rata-rata 43,34 SA) dan Makemake (rata-rata 45,79 SA) adalah dua objek terbesar sejauh ini di dalam sabuk Kuiper klasik. Haumea adalah sebuah objek berbentuk telur dan memiliki dua satelit. Makemake adalah objek paling cemerlang di sabuk Kuiper setelah Pluto. Pada awalnya dinamai 2003 EL61 dan 2005 FY9, pada tahun 2008 diberi nama dan status sebagai planet kerdil. Orbit keduanya berinklinasi jauh lebih membujur dari Pluto (28° dan 29°) [59] dan lain seperti Pluto, keduanya tidak dipengaruhi oleh Neptunus, sebagai bagian dari kelompok Objek Sabuk Kuiper klasik.
Piringan tersebar
Hitam: tersebar; biru: klasik; hijau: resonan
Eris dan satelitnya Dysnomia
Piringan tersebar (scattered disc) berpotongan dengan sabuk Kuiper dan menyebar keluar jauh lebih luas. Daerah ini diduga merupakan sumber komet berperioda pendek. Objek piringan tersebar diduga terlempar ke orbit yang tidak menentu karena pengaruh gravitasi dari gerakan migrasi awal Neptunus. Kebanyakan objek piringan tersebar (scattered disc objects, atau SDO) memiliki perihelion di dalam sabuk Kuiper dan apehelion hampir sejauh 150 SA dari Matahari. Orbit OPT juga memiliki inklinasi tinggi pada bidang ekliptika dan sering hampir bersudut siku-siku. Beberapa astronom menggolongkan piringan tersebar hanya sebagai bagian dari sabuk Kuiper dan menjuluki piringan tersebar sebagai "objek sabuk Kuiper tersebar" (scattered Kuiper belt objects).[60]
Eris
Eris (rata-rata 68 SA) adalah objek piringan tersebar terbesar sejauh ini dan menyebabkan mulainya debat tentang definisi planet, karena Eris hanya 5%lebih besar dari Pluto dan memiliki perkiraan diameter sekitar 2.400 km. Eris adalah planet kerdil terbesar yang diketahui dan memiliki satu satelit, Dysnomia.[61] Seperti Pluto, orbitnya memiliki eksentrisitas tinggi, dengan titik perihelion 38,2 SA (mirip jarak Pluto ke Matahari) dan titik aphelion 97,6 SA dengan bidang ekliptika sangat membujur.
Daerah terjauh
Titik tempat Tata Surya berakhir dan ruang antar bintang mulai tidaklah persis terdefinisi. Batasan-batasan luar ini terbentuk dari dua gaya tekan yang terpisah: angin surya dan gravitasi Matahari. Batasan terjauh pengaruh angin surya kira kira berjarak empat kali jarak Pluto dan Matahari. Heliopause ini disebut sebagai titik permulaan medium antar bintang. Akan tetapi Bola Roche Matahari, jarak efektif pengaruh gravitasi Matahari, diperkirakan mencakup sekitar seribu kali lebih jauh.
Heliopause
Voyager memasuki heliosheath
Heliopause dibagi menjadi dua bagian terpisah. Awan angin yang bergerak pada kecepatan 400 km/detik sampai menabrak plasma dari medium ruang antarbintang. Tabrakan ini terjadi pada benturan terminasi yang kira kira terletak di 80-100 SA dari Matahari pada daerah lawan angin dan sekitar 200 SA dari Matahari pada daerah searah jurusan angin. Kemudian angin melambat dramatis, memampat dan berubah menjadi kencang, membentuk struktur oval yang dikenal sebagaiheliosheath, dengan kelakuan mirip seperti ekor komet, mengulur keluar sejauh 40 SA di bagian arah lawan angin dan berkali-kali lipat lebih jauh pada sebelah lainnya. Voyager 1 dan Voyager 2 dilaporkan telah menembus benturan terminasi ini dan memasuki heliosheath, pada jarak 94 dan 84 SA dari Matahari. Batasan luar dari heliosfer, heliopause, adalah titik tempat angin surya berhenti dan ruang antar bintang bermula.
Bentuk dari ujung luar heliosfer kemungkinan dipengaruhi dari dinamika fluida dari interaksi medium antar bintang dan juga medan magnet Matahari yang mengarah di sebelah selatan (sehingga memberi bentuk tumpul pada hemisfer utara dengan jarak 9 SA, dan lebih jauh daripada hemisfer selatan. Selebih dari heliopause, pada jarak sekitar 230 SA, terdapat benturan busur, jaluran ombak plasma yang ditinggalkan Matahari seiring edarannya berkeliling di Bima Sakti.
Sejauh ini belum ada kapal luar angkasa yang melewati heliopause, sehingga tidaklah mungkin mengetahui kondisi ruang antar bintang lokal dengan pasti. Diharapkan satelit NASA voyager akan menembus heliopause pada sekitar dekade yang akan datang dan mengirim kembali data tingkat radiasi dan angin surya. Dalam pada itu, sebuah tim yang dibiayai NASA telah mengembangkan konsep "Vision Mission" yang akan khusus mengirimkan satelit penjajak ke heliosfer.
Awan Oort
Gambaran seorang artis tentang Awan Oort
Secara hipotesa, Awan Oort adalah sebuah massa berukuran raksasa yang terdiri dari bertrilyun-trilyun objek es, dipercaya merupakan sumber komet berperioda panjang. Awan ini menyelubungimatahari pada jarak sekitar 50.000 SA (sekitar 1 tahun cahaya) sampai sejauh 100.000 SA (1,87 tahun cahaya). Daerah ini dipercaya mengandung komet yang terlempar dari bagian dalam Tata Surya karena interaksi dengan planet-planet bagian luar. Objek Awan Oort bergerak sangat lambat dan bisa digoncangkan oleh situasi-situasi langka seperti tabrakan, effek gravitasi dari laluanbintang, atau gaya pasang galaksi, gaya pasang yang didorong Bima Sakti.[62][63]
Sedna
Foto teleskop Sedna
90377 Sedna (rata-rata 525,86 SA) adalah sebuah benda kemerahan mirip Pluto dengan orbit raksasa yang sangat eliptis, sekitar 76 SA pada perihelion dan 928 SA pada aphelion dan berjangka orbit 12.050 tahun. Mike Brown, penemu objek ini pada tahun 2003, menegaskan bahwa Sedna tidak merupakan bagian dari piringan tersebar ataupun sabuk Kuiper karena perihelionnya terlalu jauh dari pengaruh migrasi Neptunus. Dia dan beberapa astronom lainnya berpendapat bahwa Sedna adalah objek pertama dari sebuah kelompok baru, yang mungkin juga mencakup 2000 CR105. Sebuah benda bertitik perihelion pada 45 SA, aphelion pada 415 SA, dan berjangka orbit 3.420 tahun. Brown menjuluki kelompok ini "Awan Oort bagian dalam", karena mungkin terbentuk melalui proses yang mirip, meski jauh lebih dekat ke Matahari. Kemungkinan besar Sedna adalah sebuah planet kerdil, meski bentuk kebulatannya masih harus ditentukan dengan pasti.
Batasan-batasan
Lihat pula: Planet X
Banyak hal dari Tata Surya kita yang masih belum diketahui. Medan gravitasi Matahari diperkirakan mendominasi gaya gravitasi bintang-bintang sekeliling sejauh dua tahun cahaya (125.000 SA). Perkiraan bawah radius Awan Oort, di sisi lain, tidak lebih besar dari 50.000 SA.[64] Sekalipun Sedna telah ditemukan, daerah antara Sabuk Kuiper dan Awan Oort, sebuah daerah yang memiliki radius puluhan ribu SA, bisa dikatakan belum dipetakan. Selain itu, juga ada studi yang sedang berjalan, yang mempelajari daerah antara Merkurius dan matahari.[65] Objek-objek baru mungkin masih akan ditemukan di daerah yang belum dipetakan.
Dimensi
Perbandingan beberapa ukuran penting planet-planet:
Karakteristik
Merkurius
Venus
Bumi
Mars
Yupiter
Saturnus
Uranus
Neptunus
Jarak orbit (juta km) (SA)
57,91 (0,39)
108,21 (0,72)
149,60 (1,00)
227,94 (1,52)
778,41 (5,20)
1.426,72 (9,54)
2.870,97 (19,19)
4.498,25 (30,07)
Waktu edaran (tahun)
0,24 (88 hari)
0,62 (224 hari)
1,00
1,88
11,86
29,45
84,02
164,79
Jangka rotasi
58,65 hari
243,02 hari
23 jam 56 menit
24 jam 37 menit
9 jam 55 menit
10 jam 47 menit
17 jam 14 menit
16 jam 7 menit
Eksentrisitas edaran
0,206
0,007
0,017
0,093
0,048
0,054
0,047
0,009
Sudut inklinasi orbit (°)
7,00
3,39
0,00
1,85
1,31
2,48
0,77
1,77
Sudut inklinasi ekuator terhadap orbit (°)
0,00
177,36
23,45
25,19
3,12
26,73
97,86
29,58
Diameter ekuator (km)
4.879
12.104
12.756
6.805
142.984
120.536
51.118
49.528
Massa (dibanding Bumi)
0,06
0,81
1,00
0,15
317,8
95,2
14,5
17,1
Kepadatan menengah (g/cm³)
5,43
5,24
5,52
3,93
1,33
0,69
1,27
1,64
Suhu permukaan
min.
menengah
maks.
-173 °C
+167 °C
+427 °C
+437 °C
+464 °C
+497 °C
-89 °C
+15 °C
+58 °C
-133 °C
-55 °C
+27 °C
-108 °C
-139 °C
-197 °C
-201 °C
Konteks galaksi
Lokasi Tata Surya di dalam galaksi Bima Sakti
Lukisan artis dari Gelembung Lokal
Tata Surya terletak di galaksi Bima Sakti, sebuah galaksi spiral yang berdiameter sekitar 100.000 tahun cahaya dan memiliki sekitar 200 milyar bintang.[66] Matahari berlokasi di salah satu lengan spiral galaksi yang disebut Lengan Orion.[67] Letak Matahari berjarak antara 25.000 dan 28.000 tahun cahaya dari pusat galaksi, dengan kecepatan orbit mengelilingi pusat galaksi sekitar 2.200 kilometer per detik.
Setiap revolusinya berjangka 225-250 juta tahun. Waktu revolusi ini dikenal sebagai tahun galaksi Tata Surya.[68] Apex Matahari, arah jalur Matahari di ruang semesta, dekat letaknya dengan rasi bintang Herkules terarah pada posisi akhir bintang Vega.[69]
Lokasi Tata Surya di dalam galaksi berperan penting dalam evolusi kehidupan di Bumi. Bentuk orbit bumi adalah mirip lingkaran dengan kecepatan hampir sama dengan lengan spiral galaksi, karenanya bumi sangat jarang menerobos jalur lengan. Lengan spiral galaksi memiliki konsentrasi supernova tinggi yang berpotensi bahaya sangat besar terhadap kehidupan di Bumi. Situasi ini memberi Bumi jangka stabilitas yang panjang yang memungkinkan evolusi kehidupan.[70]
Tata Surya terletak jauh dari daerah padat bintang di pusat galaksi. Di daerah pusat, tarikan gravitasi bintang-bintang yang berdekatan bisa menggoyang benda-benda di Awan Oort dan menembakan komet-komet ke bagian dalam Tata Surya. Ini bisa menghasilkan potensi tabrakan yang merusak kehidupan di Bumi.
Intensitas radiasi dari pusat galaksi juga memengaruhi perkembangan bentuk hidup tingkat tinggi. Walaupun demikian, para ilmuwan berhipotesa bahwa pada lokasi Tata Surya sekarang ini supernovatelah memengaruhi kehidupan di Bumi pada 35.000 tahun terakhir dengan melemparkan pecahan-pecahan inti bintang ke arah Matahari dalam bentuk debu radiasi atau bahan yang lebih besar lainnya, seperti berbagai benda mirip komet.[71]
Daerah lingkungan sekitar
Lingkungan galaksi terdekat dari Tata Surya adalah sesuatu yang dinamai Awan Antarbintang Lokal (Local Interstellar Cloud, atau Local Fluff), yaitu wilayah berawan tebal yang dikenal dengan nama Gelembung Lokal (Local Bubble), yang terletak di tengah-tengah wilayah yang jarang. Gelembung Lokal ini berbentuk rongga mirip jam pasir yang terdapat pada medium antarbintang, dan berukuran sekitar 300 tahun cahaya. Gelembung ini penuh ditebari plasma bersuhu tinggi yang mungkin berasal dari beberapa supernova yang belum lama terjadi.[72]
Di dalam jarak sepuluh tahun cahaya (95 triliun km) dari Matahari, jumlah bintang relatif sedikit. Bintang yang terdekat adalah sistem kembar tiga Alpha Centauri, yang berjarak 4,4 tahun cahaya. Alpha Centauri A dan B merupakan bintang ganda mirip dengan Matahari, sedangkan Centauri C adalah kerdil merah (disebut juga Proxima Centauri) yang mengedari kembaran ganda pertama pada jarak 0,2 tahun cahaya.
Bintang-bintang terdekat berikutnya adalah sebuah kerdil merah yang dinamai Bintang Barnard (5,9 tahun cahaya), Wolf 359 (7,8 tahun cahaya) dan Lalande 21185 (8,3 tahun cahaya). Bintang terbesar dalam jarak sepuluh tahun cahaya adalah Sirius, sebuah bintang cemerlang dikategori 'urutan utama' kira-kira bermassa dua kali massa Matahari, dan dikelilingi oleh sebuah kerdil putih bernama Sirius B. Keduanya berjarak 8,6 tahun cahaya. Sisa sistem selebihnya yang terletak di dalam jarak 10 tahun cahaya adalah sistem bintang ganda kerdil merahLuyten 726-8 (8,7 tahun cahaya) dan sebuah kerdial merah bernama Ross 154 (9,7 tahun cahaya).[73]
Bintang tunggal terdekat yang mirip Matahari adalah Tau Ceti, yang terletak 11,9 tahun cahaya. Bintang ini kira-kira berukuran 80% berat Matahari, tetapi kecemerlangannya (luminositas) hanya 60%.[74] Planet luar Tata Surya terdekat dari Matahari, yang diketahui sejauh ini adalah di bintang Epsilon Eridani, sebuah bintang yang sedikit lebih pudar dan lebih merah dibandingkan mathari. Letaknya sekitar 10,5 tahun cahaya. Planet bintang ini yang sudah dipastikan, bernama Epsilon Eridani b, kurang lebih berukuran 1,5 kali massa Yupiter dan mengelilingi induk bintangnya dengan jarak 6,9 tahun cahaya.
Catatan
^ Kapitalisasi istilah ini beragam. Persatuan Astronomi Internasional, badan yang mengurusi masalah penamaan astronomis, menyebutkan bahwa seluruh objek astronomi dikapitalisasi namanya (Tata Surya). Namun, istilah ini juga sering ditemui dalam bentuk huruf kecil (tata surya)
^ Lihat Daftar satelit untuk semua satelit alami dari delapan planet dan lima planet kerdil.
^ Massa Tata Surya tidak termasuk Matahari, Yupiter, dan Saturnus, dapat dihitung dengan menambahkan semua massa objek terbesar yang dihitung dan menggunakan perhitungan kasar untuk massa awan Oort (sekitar 3 kali massa Bumi), sabuk Kuiper (sekitar 0,1 kali massa Bumi dan sabuk asteroid (sekitar 0,0005 kali massa Bumi) dengan total massa ~37 kali massa Bumi, atau 8,1 persen massa di orbit di sekitar Matahari. Jika dikurangi dengan massa Uranus dan Neptunus (keduanya ~31 kali massa Bumi), sisanya ~6 kali massa Bumi merupakan 1,3 persen dari massa keseluruhan.
^ Astronom mengukur jarak di dalam Tata Surya dengan satuan astronomi (SA). Satu SA jaraknya sekitar jarak rata-rata Matahari dan Bumi, atau 149.598.000 km. Pluto berjarak sekitar 38 SA dari Matahari, Yupiter 5,2 SA. Satu tahun cahaya adalah 63.240 SA..
Langganan:
Postingan (Atom)